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Abstract. In this work, we have mtempted to improve an effectivemedium approximation 
previously developed by us to study the effective response of a class of strongly nonlinear 
composite media, which obey a current-field (J-E) relation of the farm J = xIEI'E. The 
improved calculations are compared with numerical simulations and with the recently establtshed 
bounds for strongly nonlinear composites. We find very good improvement over the previous 
work especially at high c o n m t  between the components. 

1. Introduction 

Recently, attention has been concentrated on a class of strongly nonlinear composite media 
in which the nonlinear behaviour occurs when a strong electric field is applied to condensed 
matter. The study of nonlinear composite media has potential applications in engineering 
and physics [13 ] .  In this work, we study a class of nonlinear conducting composite media 
in which the inclusion and the host medium obey a local current-field (J-E)  relation of 
the form J = xIEI*E. The effective response of strongly nonlinear composite media 
is extremely difficult to calculate. As the nonlinearity appears as the leading form of the 
behaviour rather than as a small correction to a predominant linear response, the conventional 
perturbation method [S, 61 fails. Nevertheless, substantial progress has been made with the 
aid of various approximate analytic and numerical methods over the past few years [7-11]. 

Blumenfeld and Bergman [7] developed a small-contrast expansion for the effective 
dielectric response of strongly nonlinear composites. Ponte Castaneda [SI proposed a 
dual variational method for establishing optimal bounds and estimates for the effective 
response of nonlinear composites. Recently Yu and Gu [9] adopted a simple variational 
approach for obtaining explicit dilute-limit expressions for a small concentration of spherical 
inclusions embedded in a host medium. In an attempt to extend the validity of the dilute- 
limit expressions to larger volume fractions, Lee and Yu [lo] re-examined a self-consistent 
Bruggeman-type effective-medium approximation (EMA) for strongly nonlinear composites. 
The EMA results were compared with numerical simulations in nonlinear conductance 
networks with reasonable agreement at low contrast. More recently, the scaling form of the 
strongly nonlinear EMA was extracted near the percolation threshold [ I l l .  

The object of the present investigation is twofold. First, it is instructive to improve 
the EMA developed by Lee and Yu [lo] for strongly nonlinear composite materials by 
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adding more parameters to the trial functions. Second, it is instructive to compare the 
improved calculations with the recently established bounds and estimates [SI and with 
numerical simulations [lo]. The paper is organized as follows. In the next section, we shall 
reinvestigate a simple one-parameter EMA for strongly nonlinear composites. to establish 
notation. In section 3, we develop an improved formalism for the EMA. In section 4, 
results obtained with the improved EMA will be compared with numerical simulation data 
published in the literature [IO], and with the recently proposed HashinShtrikman bound 
for strongly nonlinear composites [ 121. 

2. Effective-medium approximation for strongly nonlinear composites 

We consider strongly nonlinear composite media which obey a current-field response of the 
form 

The nonlinear coefficient x takes on a value x i  in the inclusion, present at volume fraction 
p ,  and xm in the host medium, present at volume fraction 1 - p .  We shall restrict ourselves 
to two dimensions, i.e. the inclusions are long cylinders. In order to establish notation, we 
reinvestigate a fully self-consistent, Bruggeman-type EMA [ 101 by considering a cylindrical 
inclusion of radius a and nonlinear coefficient x. (a = m, i )  embedded in an effective 
homogeneous medium with nonlinear coefficient x e .  The volume Q of the effective medium 
is much larger than that of the inclusion. If a uniform far field & is applied, the local field 
is given by E* for the type-a inclusion. The EMA requires that the volume average of the 
local electric field coincides with the uniform applied field [IO], or 

Hence the problem reduces to finding the local electric field in  the inclusion by solving the 
electrostatic boundary-value problems of strongly nonlinear media The governing equations 
for electric conduction V, J = 0 and V x E = 0 lead to the following differential equation: 

where ~ ( r )  is the potential. Together with the boundary conditions for the continuity of 
9 and J on the surfaces of inclusions, equation (3)  forms an electrostatic boundary-value 
problem. which cannot be solved exactly for E,. To find the best approximate solution for 
E=, we resort to using a variational principle by minimizing h e  energy functional [Q]: 

with respect to an arbitrary away from the solution of equation (3) provided that 69 
vanishes at the surfaces of inclusions. The electric field is then given by E = Vp. 

In [ 9 ] ,  we invoked a one-parameter variational method and obtained a crude estimatc 
of E,. In order to improve the variational solution, we may include more parameters in the 
trial potential functions; we believe that trial potential functions with more parameters may 
generally be better than a simple one-parameter trial function [9, IO]. To this end, Yu and 
Gu [ 131 recently discussed the proper choice of trial functions and improved the approach 
by including more variational parameters. It was also shown that the proposed variational 
field distribution converges quite well when fifteen coefficients are included in the fields 
[13]. The improved formalism will be applied to the EMA in the next section. 
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3. Improved effective-medium approximation 

The simple EMA is able to give a reasonably good description for the effective nonlinear 
response for moderate contrast, except for where the volume fraction is near the percolation 
threshold [9] .  We attempt to improve the variational solution of electrostatic boundary- 
value problems of strongly nonlinear media. We choose trial functions with a total of 18 
coefficients for the potential inside the inclusion ((U) and the effective medium (e): 

VC(r, e) = (c7,r + ~ p ~ a - ~ r ~  + ~ ; ; a - ~ r ~ ) c o s ~  + (c;,r + c&a-'r3 + 

Ve(r, 0) = r c o s e  + (b:,a2r-' + bp3a4r-' + b : 5 a 6 r - 5 ) ~ ~ s ~  

cos38 
+ (c;,r + c??a-*r' + c & ~ - ~ r ~ )  cos58 + . , . r c a  (5) 

+(b;,a'r-' + bY3a4r-? + b & ~ ~ r - ~ ) c o s  38 
+ (b;,a*r-' + b&a4r-3 + b;+1~r-~)cos58 + . . . r z a. (6) 

We have set EO = 1 for convenience. Hence we write the trial potential functions in the 
inclusion and host regions as infinite sums of functions that can be separated into radial 
and azimuthal parts, to which we usually refer as the mode functions. These functions have 
been chosen so as to satisfy the symmetry and the boundary conditions-for boundary- 
value problems with cylindrical symmetry, they are trigonometric functions [13]. We should 
remark that i t  is not the case that each mode of (5) and (6)  solves the electrostatic boundary- 
value problem of strongly nonlinear media-in principle, one has to calculate the entire 
infinite series. It is hoped that the contribution from higher-order modes is not as important 
as that from the few lowest modes. This can be confirmed only in actual calculations. 

By using the boundary condition for fp at r = a,  we find three relations among the 18 
coefficients: 

cyl + cy3 + cy5 = 1 +by, + by? + by5 

c;l + c& + c& = btl  + by3 + b&. 
G I  + 4 3  + c% = by1 + bf;; + b k  

This reduces the problem to 15 independent variational parameters for the type-@ inclusion. 
With this choice of trial function, the energy functional in equation (4) is given by 

1 
We = xr  + p'xe [ - 1 - 4bp, + 4(b7, )' + j(b:, )4 + . 

where p' = ra ' /Q is the volume fraction of the type-(U inclusion. Minimizing equation 
(7) with respect to the variational parameters gives the following equations: 

Hence, a system of 15 simultaneous equations has to be solved for the type-(U inclusion. 
The nonlinear equations can be solved to give the coefficients as functions of xe. By 
examining the local-field distribution in the inclusions, we find that dominant contributions 
arise from coefficients c l l ,  bll, bl?, b31, b33. b53 and b55. Other coefficients are relatively 
small in magnitude. In fact, the inclusion of just two parameters bll and b13 already gives 
roughly the same results [13]. 
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Figure 1. A semilogarithmic plot of h e  normalized effective nonlinear response logl0(xl /xm) 
againsl the volume fraction p for varying m n m t  beween [he components: ( U )  xi/x, = 0.1; 
(b) x i / x m  = 0.01; and (c )  .yi/xn = 0.001. From the bollom upwards. we show results from: the 
HS bound study (solid lines); numerical simulations (symbols): the present work (long-dashed 
lines); and previous work [ I O ]  (short-dashed lines). 
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Let us consider a strongly nonlinear composite medium in which inclusions of nonlinear 
coefficient xi at a volume fraction p are randomly embedded in a host medium of coefficient 
xm at volume fraction 1 - p .  The self-consistency condition (equation (2)) requires that 

p ( c f , + C ; ) + C / 5 ) + ( l  -p)(cy,+c;)+c;;)= I .  (9) 

The right-hand side denotes the magnitude of the applied electric field (Eo = 1) along the 
x direction. The effective response ,ye can be calculated numerically by solving (8) and 
(9). In figure 1, we plot the normalized effective nonlinear response ~ J x , , ,  against the 
volume fraction p for varying contrast between the components: (a) x , / x m  = 0.1; (b)  
x i f x ,  = 0.01; and (c) x , / x m  = 0.001. The results of the present work will be compared 
with those of the HashinShtrikman bound method [12] and with numerical simulations 
[lo] in the next section. 

4. Comparisons with numerical simulations and the Hashin-Shtrikman bound 
method 

Numerical simulations were performed on two-dimensional nonlinear conductance networks 
as described in [lo], with the network size increased to 30 x 30. It is instructive to compare 
the results with existing approximations. In analogy to the HashinShlrikman (HSJ bounds 
[I21 for linear composites, Ponte Castaneda [8] proposed the following bound for strongly 
nonlinear composites: 

,% B min hl I P X $  + (1 - p)xmC, )  (10) 

where w is a variational parameter. If xi t x,, then 

si = [ I  - (1 - P)OI* 

si = [l - (1 - p)ol2 + (I - p)o2 

s, = (1 + p w p  + PO2 

while if xi c x,, then 

s, = (1 + pw)2.  

In figure 1, we also plot the results from the simple EMA investigation [lo], numerical 
simulations [IO] and the HS lower-bound method against p for varying contrast Xi/xm. 
We find from the plots that the improved calculations are in much better agreement with 
numerical simulations than the simple EMA results and the HS bound results are always 
below those obtained using the other approaches. We find very good improvement over 
the previous work, especially for high contrast between the components. We should remark 
that the HS bound is only a rigorous lower bound, rather than an exact result [SI. 

In conclusion, we have improved the recently developed EMA [lo] in order to study 
the effective response of a class of strongly nonlinear composite media. The improved 
formalism is much better than the simple EMA approach when compared with numerical 
simulations, especially at high contrast x i / x m  between the components. By using the 
improved formalism, we should be able to obtain a better estimate of the percolation 
threshold, pc, and improved scaling laws near the percolation threshold [I 11. 
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